1. Carefully state the floating point representation theorem. (5)

2. Carefully state the fundamental axiom of floating point arithmetic. (5)

3. Let \(a = 0.00123601 \) and \(b = 12360.1 \). Using 4 decimal digit rounding arithmetic, compute the following:
 (a) \(\text{fl}(a) \)
 (b) \(\text{fl}(b) \)

4. Consider the computation of \(c = ab \), where \(a \) and \(b \) are real numbers (not necessarily floats). Let the computed product be \(\tilde{c} \), and assume that none of \(a \), \(b \) or \(c \) overflow or underflow. Give a bound for the relative error in \(\tilde{c} \). (10)
5. On Conditioning and Stability

(a) Define ill-conditioning

(b) Describe what a condition number tells us.

(c) What is a backward stable computation?

(d) What is a backward stable method?

(e) Discuss how conditioning and stability can be used to evaluate the error in a computation.
6. Let $A = \begin{bmatrix} 1 & 9 \\ 6 & 3 \end{bmatrix}$. Let ρ be the growth factor for Gaussian elimination.

(a) Give L, U, and ρ from the $A = LU$ factorization of A.

(b) Give L, U, P, and ρ from the $PA = LU$ factorization of A.

(c) Explain why pivoting is used in Gaussian Elimination and give an example of an invertible matrix that does not have an LU factorization.
7. Let \(A \in \mathbb{R}^{n \times n} \) be nonsingular and \(b \in \mathbb{R}^n \). Describe how the \(PA = LU \) factorization can be used to solve the system \(Ax = b \). Give a flop count for each step.

8. Find the number of multiplications required to solve an \(n \times n \) lower triangular system using forward substitution.