Three Views of Cancellation

Let x and y be real numbers such that x, y and $x+y$ do not overflow or underflow. How good is the floating point approximation $\text{fl}(\text{fl}(x) + \text{fl}(y))$ to the true value $x+y$? Write $\bar{x} = \text{fl}(x)$, $\bar{y} = \text{fl}(y)$, and $\bar{z} = \text{fl}(\bar{x} + \bar{y})$. If $z = x+y$, then the relative error in the computed sum is

$$\frac{|z - \bar{z}|}{|z|}.$$

• First, an algorithmic perspective: Suppose $x = 0.d_1d_2\ldots d_sd_{s+1}\ldots d_t\times \beta^e$, and $y = -0.d_1d_2\ldots d_se_{s+1}\ldots e_t\times \beta^e$, with $\bar{x} = 0.d_1d_2\ldots d_sd_{s+1}\ldots d_t \times \beta^e$ and $\bar{y} = -0.d_1d_2\ldots d_se_{s+1}\ldots e_t \times \beta^e$. We have set this up so that x and y are opposite numbers up to s digits. Then (without loss of generality take $e_{s+1} \leq d_{s+1}$)

$$\bar{x} + \bar{y} = \pm 0.00\ldots 0f_{s+1}f_{s+2}\ldots f_t f_{t+1} \times \beta^e,$$

giving

$$\bar{z} = \text{fl}(\bar{x} + \bar{y}) = \pm f_{s+1}f_{s+2}\ldots f_t g_1 g_2 \ldots g_s \times \beta^{e-s}.$$

Now \bar{z} carries with it the s digits g_1, \ldots, g_s which are completely meaningless! The first s digits of x and y cancelled out, and as those zeros slid off to the left, they were replaced by garbage on the right. If x and y have the same sign, there is no cancellation, but if s is very large the result can be catastrophic. Notice that s can be large if $x+y \approx 0$.

• Now an error analysis: By the FAFA and the FRT there exist $|\epsilon_x|, |\epsilon_y|, |\epsilon| \leq \mu$ such that

$$\bar{z} = \text{fl}(\bar{x} + \bar{y}) = (x(1 + \epsilon_x) + y(1 + \epsilon_y))(1 + \epsilon),$$

so

$$|z - \bar{z}| = |x(\epsilon_x + \epsilon) + y(\epsilon_y + \epsilon) + O(\mu^2)| \leq 2\mu(|x| + |y|) + O(\mu^2)$$

This gives an upper bound on the relative error:

$$\frac{|z - \bar{z}|}{|z|} \leq 2\mu \frac{|x| + |y|}{|x+y|} + O(\mu^2)$$

Notice that this can be large if $x+y \approx 0$.

• Finally, we do a sensitivity analysis: Consider the problem “evaluate the function $f(z) = x+z$ at $z = y$”. Small relative perturbations in z can be magnified in $f(z)$ by the relative condition number

$$\nu = \frac{|y||f'(y)|}{|f(y)|} = \frac{|y|}{|x+y|}.$$

Notice that this can be large if $x+y \approx 0$.